Exercise 6

Solve the differential equation.

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=x^{2}
$$

Solution

This is a linear inhomogeneous ODE, so the general solution can be expressed as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
\frac{d^{2} y_{c}}{d x^{2}}+\frac{d y_{c}}{d x}-2 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE with constant coefficients, so it has solutions of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad \frac{d y_{c}}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y_{c}}{d x^{2}}=r^{2} e^{r x}
$$

Substitute these formulas into the ODE.

$$
r^{2} e^{r x}+r e^{r x}-2\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+r-2=0
$$

Solve for r.

$$
\begin{gathered}
(r+2)(r-1)=0 \\
r=\{-2,1\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-2 x}$ and e^{x}. According to the principle of superposition, the general solution to equation (1) is a linear combination of these two.

$$
y_{c}(x)=C_{1} e^{-2 x}+C_{2} e^{x}
$$

C_{1} and C_{2} are arbitrary constants. On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
\frac{d^{2} y_{p}}{d x^{2}}+\frac{d y_{p}}{d x}-2 y_{p}=x^{2} \tag{3}
\end{equation*}
$$

Since the inhomogeneous term is a polynomial of degree 2, the particular solution is $y_{p}=A x^{2}+B x+C$.

$$
y_{p}=A x^{2}+B x+C \quad \rightarrow \quad \frac{d y_{p}}{d x}=2 A x+B \quad \rightarrow \quad \frac{d^{2} y_{p}}{d x^{2}}=2 A
$$

Substitute these formulas into equation (3).

$$
\begin{gathered}
(2 A)+(2 A x+B)-2\left(A x^{2}+B x+C\right)=x^{2} \\
(2 A+B-2 C)+(2 A-2 B) x+(-2 A) x^{2}=x^{2}
\end{gathered}
$$

Match the coefficients to get a system of equations for A, B, and C.

$$
\begin{array}{r}
2 A+B-2 C=0 \\
2 A-2 B=0 \\
-2 A=1
\end{array}
$$

Solving it yields

$$
A=-\frac{1}{2} \quad \text { and } \quad B=-\frac{1}{2} \quad \text { and } \quad C=-\frac{3}{4} .
$$

The particular solution is then

$$
y_{p}=-\frac{1}{2} x^{2}-\frac{1}{2} x-\frac{3}{4} .
$$

Therefore, the general solution to the original ODE is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =C_{1} e^{-2 x}+C_{2} e^{x}-\frac{1}{2} x^{2}-\frac{1}{2} x-\frac{3}{4} .
\end{aligned}
$$

